
Prepared By,

Md Zahid Akon

Lecturer

Department of CSE

Structure
Programming

COURSE CODE: CSE-0611-1103

Develop Modular
Programs Using
Functions and Array

Apply Control Structures in
Program Development

Understand the
Fundamental Concepts of
C Programming

Implement Structures and

Unions for Complex Data

Utilize Pointers and Manage
Memory Dynamically

Handle Files for Data

Storage and Retrieval

CLO ’S

01

02

03 06

05

04

Sl
no

Topics Hours CLOs

1

Introduction

to C Programming: Syntax, Data Types, and Operators
3 CLO1

2

Input/Output

Operations, Basic Programs
3 CLO1

3

Control

Flow: If-Else, Switch, Loops (For, While, Do-While)
4 CLO1,

CLO2

4

Functions:

User-defined, Recursion, and Storage Classes
4 CLO2,

CLO3

5

Arrays:

Single-Dimensional and Multi-Dimensional

3 CLO3

Summary of Course Content:

im

Sl
no

Topics Hours CLOs

6
Strings

and String Handling Functions
3 CLO3

7
Pointers:

Basics, Pointer Arithmetic, and Dynamic Memory Allocation
4 CLO4

8
Structures,

Enumerations, and Unions
4 CLO5

9
File

Handling: Read, Write, Append Modes
4 CLO6

10

Debugging

and Error Handling

3 CLO1-CLO6

Summary of Course Content:

im

Recommended Books

1.E. Balagurusamy, Tata McGraw-Hill

(ISBN: 9781259004612)

1.B.W. Kernighan and D.M. Ritchie,

2nd Edition, Prentice Hall (ISBN:

9780131103627)

PROGRAMMING IN ANSI C THE C PROGRAMMING LANGUAGE

BRAIN STROMING

Lecture

Q&A

PRACTICAL EXCERSISE

INCLASS ASSESSMENT

GROUP WORK

Assessment

Pattern

Course Plan

Week Topics Teaching Strategy(s) Assessment

Strategy(s)

Alignment to

CLO
1 Introduction to C Programming, Data

Types, Operators

Lecture, Q&A, In-class

Examples

Participation, Quiz CLO1

2 Input/Output Operations, Basic

Programs

Lecture ,Practical Exercises,

Group Discussions

Short Assignment, Quiz CLO1

3 Control Flow Statements: If-Else, Switch Lecture ,Live Coding,

Problem-Solving

Quiz, Problem-solving

Tasks

CLO1, CLO2

4 Loops Lecture ,Live Coding,

Problem-Solving

Quiz, Problem-solving

Tasks

CLO1, CLO2

5 Functions: User-defined, Recursion Interactive Lectures, Case

Studies

Group Task, Quiz CLO2, CLO3

6 Arrays: Single-Dimensional, Multi-

Dimensional

Lecture ,Exercises, Real-

world Examples

Quiz, Assignment CLO3

Course Plan

Week Topics Teaching

Strategy(s)

Assessment

Strategy(s)

Alignment to CLO

7 Strings Lecture ,Code

Demonstrations,

Hands-on Tasks

Assignment, Group

Discussion

CLO3

8 String Handling Functions Lecture ,Code

Demonstrations,

Practical Labs

Quiz, Assignment CLO3

9 Pointers: Basics, Arithmetic, Lecture, Practical Lab

Sessions

Performance

Evaluation, Quiz

CLO4

10 Dynamic Memory Allocation Lecture, Practical Lab

Sessions

Performance

Evaluation, Quiz

CLO4

11 Structures, Enumerations, and

Unions

Lecture, Group

Activities

Group Task,

Assignment

CLO5

12 File Handling: Read, Write, Append

Modes

Lab Demonstrations,

Code Reviews

Lab Report, Quiz CLO6

Course Plan

Week Topics Teaching Strategy(s) Assessment Strategy(s) Alignment to CLO

13 Debugging and Error Handling Revision, Practical

Debugging Challenges

In-class Practice, Final

Exam

CLO1-CLO6

14 Advanced Functions and Macros Lecture, Practical

Exercises

Quiz, Assignment CLO2, CLO3

15 Advanced Pointer Techniques Lecture, Hands-on

Practice

Quiz, Problem-Solving

Task

CLO4

16 Project Integration and Review Project-based Learning,

Group Work

Project Evaluation CLO1-CLO6

17 Final Exam and Project Submission Written Exam, Project

Presentation

Final Exam, Project

Grading

CLO1-CLO6

Week 1

Chapter 1

Introduction to C

Programming, Data

Types, Operators

Structured programming

Structured programming (sometimes known as modular programming) is a subset of procedural

programming that enforces a logical structure on the program being written to make it more

efficient and easier to understand and modify. Certain languages such as Ada, Pascal, and dBASE

are designed with features that encourage or enforce a logical program structure.

http://whatis.techtarget.com/definition/Ada
http://whatis.techtarget.com/definition/Ada
http://whatis.techtarget.com/definition/Ada
http://searchenterpriselinux.techtarget.com/definition/Pascal
http://searchenterpriselinux.techtarget.com/definition/Pascal

Why is C called a structured

programming language?

C is called a structured programming

language because to solve a large problem,

C programming language divides the

problem into smaller modules called functions

or procedures each of which handles a

particular responsibility. The program which

solves the entire problem is a collection of

such functions.

My First Program

Data Types in C

A data type is an attribute associated with a

piece of data that tells a computer system how to

interpret its value. Understanding data types

ensures that data is collected in the preferred

format and that the value of each property is as

expected

• int: Stores integers (e.g., int age = 25;)

• float: Stores decimal numbers (e.g., float price = 12.99;)

• double: Stores large decimals (e.g., double pi =

3.141592;)

• char: Stores single characters (e.g., char grade = 'A';)

Format specifiers in C

Format specifiers are used in functions like printf and scanf to input or output values of different

data types.

Specifier Data Type Example

%d Integer

(decimal)

printf("%d", 10);

%f Floating-point printf("%.2f",

3.14);

%c Character printf("%c", 'A');

%s String printf("%s",

"Hello");

%lf Double printf("%lf",

3.14159);

%x Hexadecimal

integer

printf("%x", 255);

%o Octal integer printf("%o", 8);

Variables in C
•A variable is a named memory location used to store data.

•Its value can change during program execution.

data_type variable_name = value; // defining single variable

or

data_type variable_name1, variable_name2; // defining multiple

variable

• data_type: Type of data that a variable can store.

• variable_name: Name of the variable given by the user.

• value: value assigned to the variable by the user.

Identifiers In C

• An identifier can include letters (a-z or A-Z), and digits (0-

9).

• An identifier cannot include special characters except the

‘_’ underscore.

• Spaces are not allowed while naming an identifier.

• An identifier can only begin with an underscore or letters.

• We cannot name identifiers the same as keywords

because they are reserved words to perform a specific

task. For example, printf, scanf, int, char, struct, etc. If we

use a keyword’s name as an identifier the compiler will

throw an error.

• The identifier must be unique in its namespace.

• C language is case-sensitive so, ‘name’ and ‘NAME’ are

different identifiers.

Operators

Week 2

Input/Output

Operations,

Basic Programs

Basic Input and Output in C
C language has standard libraries that allow input and output in a program. The stdio.h or standard
input output library in C that has methods for input and output

scanf()

The scanf() method, in C, reads the value

from the console as per the type specified

and store it in the given address.

Syntax:

scanf("%X", &variableOfXType);

printf()

The printf() method, in C, prints the value

passed as the parameter to it, on the

console screen.

Syntax:

printf("%X", variableOfXType);

Simple C program to display "Hello

World"

Explanation:

•#include <stdio.h> – This line includes the standard

input-output library in the program.

•int main() – The main function where the execution

of the program begins.

•printf(“Hello, World!\n”); – This function call prints

“Hello, World!” followed by a new line.

•return 0; -This statement indicates that the program

ended successfully.

Print an Integer Value in C

#include <stdio.h>

// Driver code
int main()
{

// Declaring integer
int x = 5;

// Printing values
printf("Printing Integer value %d", x);
return 0;

}

C program to add two numbers

#include <stdio.h>

int main() {

int a, b, sum = 0;

// Read two numbers from the user

printf("Enter two integers: ");

scanf("%d %d", &a, &b);

// Calculate the addition of a and b

// using '+' operator

sum = a + b;

printf("Sum: %d", sum);

return 0;

}

C Program to Swap Two Numbers

#include <stdio.h>
int main() {

int a = 5, b = 10, temp;

// Swapping values of a and b
temp = a;
a = b;
b = temp;

printf("a = %d, b = %d\n", a, b);
return 0;

}

C Program to

Swap Two

Numbers WithOut

using Third
Variables.

Conditional S tatements in C

Unlock the Power of Decision-Making in Your C Programs

Week 3

Chapter 3

Introduction to Conditional Statements

Controlling Program Flow

Conditional statements dictate which code block executes based

on specific conditions

Decision-Making Power

Allow your programs to react to different inputs, scenarios, and

events

The If S tatement: Syntax and Examples

Bas ic Syntax

if (condition) {

// Code to execute if condition is true

}

Example

#include

int main() {

int num = 10;

if (num > 5) {

printf("Number is greater than 5\n");

}

return 0;

}

The Else If Statement: Nested Conditional Logic

Adding Another Condition

if (condition1) {

// Code to execute if condition1 is true

} else if (condition2) {

// Code to execute if condition2 is true

}

Example

#include

int main() {

int num = 7;

if (num > 10) {

printf("Number is greater than 10\n");

} else if (num > 5) {

printf("Number is greater than 5\n");

}

return 0;

}

The Else If Ladder: Chaining Multiple Conditions

Chain of Checks

if (condition1) {

// Code to execute if condition1 is true

} else if (condition2) {

// Code to execute if condition2 is true

} else if (condition3) {

// Code to execute if condition3 is true

} ...

Example

#include

int main() {

int grade = 85;

if (grade >= 90) {

printf("A\n");

} else if (grade >= 80) {

printf("B\n");

} else if (grade >= 70) {

printf("C\n");

} else {

printf("D\n");

}

return 0;

}

The Switch Statement: Handling Multiple Cases

Multiple Case Choices

switch (expression) {

case value1:

// Code to execute for value1

break;

case value2:

// Code to execute for value2

break;

default:

// Code to execute if no case matches

}

Example

#include

int main() {

char grade = 'B';

switch (grade) {

case 'A':

printf("Excellent!\n");

break;

case 'B':

printf("Good!\n");

break;

case 'C':

printf("Fair!\n");

break;

default:

printf("Invalid grade!\n");

}

return 0;

}

Graphical Representation of Conditional

S tatements

1 Decis ion Points

2 Branching Paths

3 Code Execution

Conditional Statement Examples with Code and Output

Example 1

if (age >= 18) {

printf("You are eligible to vote\n");

} else {

printf("You are not eligible to vote\n");

}

Output: You are eligible to vote

Example 2

switch (day) {

case 1:

printf("Monday\n");

break;

case 2:

printf("Tuesday\n");

break;

default:

printf("Invalid day\n");

}

Output: Monday

Choos ing the Appropriate Conditional

S tatement

1 If/E lse If Ladder

For a sequence of related

conditions

2 Switch Statement

For handling specific cases of

a single variable

3 Nested If/E lse If

For complex conditions with multiple levels of logic

Bes t Practices and Tips for Conditional

S tatements

Clear Logic

Make your conditions easy to understand

and follow

Proper Indentation

Improves readability and maintains code

structure

Use Comments

Explain the purpose and functionality of

your code

Loop

Dive into the world of loops in C programming, exploring their syntax, structure,

and applications.

Chapter 4

Week 4

Introduction to Loops in C

Repetitive Tasks

Loops automate the execution of a
block of code multiple times, simplifying
repetitive tasks.

Iteration Control

They allow you to control the number of
iterations, ensuring precise execution
based on conditions.

The for Loop: Syntax and Structure

for (initialization; condition; increment) {

// Code to be executed

}

The while Loop: Conditional

Execution

while (condition) {

// Code to be executed

}

The do-while Loop: Pos t-

Condition Checking

do {

// Code to be executed

} while (condition);

Nested Loops: Combining Loops

for (int i = 0; i < 5; i++) {

for (int j = 0; j < 3; j++) {

// Code to be executed

}

}

Loop Control S tatements:

break and continue

for (int i = 0; i < 10; i++) {

if (i == 5) {

break; // Exit the loop

} else if (i % 2 == 0) {

continue; // Skip to the next iteration

}

// Code to be executed

}

Graphical Representation of

Loop Execution

Visualize loop execution through animations and diagrams,

understanding how loops work and the flow of control.

Example Code: Printing a

S tar Pattern

#include

int main() {

for (int i = 0; i < 5; i++) {

for (int j = 0; j <= i; j++) {

printf("*");

}

printf("\n");

}

return 0;

}

Output Demonstration:

Visualizing the Loop

See the output in action, demonstrating the pattern created by the loop and how

it iterates to produce the desired result.

Functions: User-defined,

Recursion
This presentation dives into the world of functions in C programming, exploring

user-defined functions and the powerful concept of recursion.

What are Functions?

Modular Code

Break down a program into smaller, reusable units

Code Organization

Improve readability and maintainability

Syntax and Structure of User-

defined Functions

return_type function_name(parameter_list) {

// Function body

// Statements to perform

return value;

}

Defining and Calling Functions

int add(int a, int b) {

return a + b;

}

int main() {

int sum = add(5, 3);

printf("Sum: %d\n", sum);

return 0;

}

1 1 . Definition

Specifies code and return type

2 2. Call

Executes the function's code

Defining and Calling Functions

int add(int a, int b) {

return a + b;

}

int main() {

int sum = add(5, 3);

printf("Sum: %d\n", sum);

return 0;

}

1 1. Definition

Specifies code and return type

2 2. Call

Executes the function's code

Function Parameters and Arguments

int multiply(int a, int b) {

return a * b;

}

int main() {

int product = multiply(5, 3);

printf("Product: %d\n", product);

return 0;

}

Parameters

Variables in function definition

Arguments

Values passed during function call

Function Return Types

int sum(int a, int b) {

return a + b;

}

float average(int a, int b) {

return (float) (a + b) / 2;

}

void printMessage() {

printf("Hello from function!\n");

}

int

Returns an integer

float

Returns a floating-point number

void

Doesn't return a value

Returning Values from

Functions

int add(int a, int b) {

return a + b;

}

Passing Arrays to Functions

void printArray(int arr[], int size) {

for (int i = 0; i < size; i++) {

printf("%d ", arr[i]);

}

printf("\n");

}

int main() {

int numbers[] = {1, 2, 3, 4, 5};

int size = sizeof(numbers) / sizeof(numbers[0]);

printArray(numbers, size);

return 0;

}

Array

Passed by reference

Pointer

Access array elements

Recursion: Functions Calling Themselves

int factorial(int n) {

if (n == 0) {

return 1;

} else {

return n * factorial(n - 1);

}

}

int main() {

int result = factorial(5);

printf("Factorial of 5: %d\n", result);

return 0;

}

1 Base Case

Stops the recursion

2 Recursive Case

Calls itself with a smaller input

Function Pointers

void (*funcPtr)(int);

void greet(int num) {

printf("Greetings %d times!\n", num);

}

int main() {

funcPtr = greet;

(*funcPtr)(3);

return 0;

}

1 Function Pointer

2 Stores Function Address

3 Dynamic Function Call

Storage Classes in Functions

int add(int a, int b);

int main() {

int sum = add(5, 3);

return 0;

}

int add(int a, int b) {

return a + b;

}

1
auto

Local scope

2
static

Retains value across calls

3
extern

Declares variables outside of functions

4
register

Stores in registers

Practical Examples and

Graphical Representations

1
Sorting

Bubble sort, insertion sort

2
Searching

Linear search, binary search

3
Data Structures

Linked lists , stacks, queues

Recursive Functions: Definition and Concept

Self-Calling

Functions that call themselves within their own definition

Base Case

A condition to stop the recursion

Implementing Recursion with

Examples

int factorial(int n) {

if (n == 0) {

return 1;

} else {

return n * factorial(n - 1);

}

}

Advantages and

Disadvantages of Recursion

Elegance

Provides concise and elegant

solutions

Stack Overflow

Deep recursion can exhaust the

stack memory

Arrays in C: A Deep Dive

Explore the world of single-dimensional and multi-dimensional arrays

in C programming, uncovering their structure, manipulation, and

diverse applications.

Week 6

Chapter 6

Introduction to Arrays

Organized Data

Efficiently store collections of related data of the same

data type.

Memory Efficiency

Contiguous blocks of memory for compact storage and

fast access.

Declaring and Initializing

Single-Dimensional Arrays

Declaration

data_type array_name[size];

Initialization

int numbers[5] = {1 0, 20, 30,

40, 50};

Example

float temperatures[7] = {25.5, 27.2, 28.0, 26.8, 29.1 , 27.5, 28.3};

Accessing and Manipulating

E lements

1 Access

array_name[index]

2 Modification

array_name[index] =

new_value;

3 Example

numbers[2] = 60; // Change element at index 2 to 60

Graphical Representation of

Single-Dimensional Arrays

Memory Location

Contiguous memory blocks for

efficient data storage and access.

Element Index

E ach element has a unique index

for easy retrieval and modification.

Data Values

E lements hold data of the same

data type, allowing for uniform

operations.

Declaring and Initializing Multi-Dimensional Arrays

Declaration

data_type

array_name[row_size][column_siz

e];

Initialization

int matrix[3][2] = {{1, 2}, {3, 4}, {5,

6}};

Example

char board[8][8]; // Representing

a chessboard

Accessing and Manipulating

Elements

1 Access

array_name[row_index][c

olumn_index]

2 Modification

array_name[row_index][c

olumn_index] =

new_value;

3 Example

matrix[1][0] = 1 0; // Change element at row 1 , column 0 to 1 0

Graphical Representation of

Multi-Dimensional Arrays

1 Rows represent the first dimension

2 Columns represent the second dimension

3 Each element occupies a unique position in the 2D grid

Array Operations: Traversal,

Searching, Sorting

Traversal

Visiting each element systematically

Searching

Finding a specific element within the array

Sorting

Arranging elements in ascending or descending order

Code Examples and Outputs

1 Code

2 Input

3 Output

Strings in C

Explore the world of strings in C programming with a visual guide that

demystifies key concepts and empowers you to manipulate text with

ease.

What are Strings in C?

Arrays of Characters

Strings are essentially arrays of characters in C. Each

character in the string is stored in a contiguous memory

location.

Null Termination

Strings are terminated by a null character ('\ 0'),

signifying the end of the string. This allows for efficient

string manipulation and length calculation.

Declaring and Initializing
S trings

1 S tring Literals

Use double quotes to

create string literals. For

example: char str[] =

"Hello";

2 Character Arrays

Initialize character arrays

directly with characters.

For example: char str[6] =

{'H', 'e', 'l', 'l', 'o', '\0'};

String Manipulation:

Concatenation

strcat Function

The strcat function appends a source string to the end

of a destination string.

Example

char str1[] = "Hello"; char str2[] = " World"; strcat(str1,

str2); // str1 now contains "Hello World"

S tring Manipulation:
Comparison

strcmp Function

The strcmp function

compares two strings

lexicographically.

Return Values

- 0: S trings are equal. -

Positive: First string is

lexicographically greater. -

Negative: First string is

lexicographically smaller.

String Manipulation:

Extraction

strncpy Function

The strncpy function copies a

specified number of characters

from a source string to a

destination string.

Example

char str1[] = "Hello World"; char

str2[6]; strncpy(str2, str1, 5); //

str2 now contains "Hello"

S tring Manipulation: Modification

1strchr Function

The strchr function locates the first occurrence of a

specified character within a string and returns a

pointer to the character's location. 2 Example

char str[] = "Hello World"; char *ptr = strchr(str, 'W'); //

ptr points to the first occurrence of 'W' in str

S tring Manipulation: S earching

1
strstr Function

2

E xample

char str[] = "Hello World"; char *ptr = strstr(str, "World");

// ptr points to the first occurrence of "World" in str

Practical Coding Examples

and Outputs

1
Input

char str[] = "Hello, World!";

2
Output

Hello, World!

Conclusion and Key Takeaways

1 Mastering S trings

2

E fficiency

Efficient string manipulation is crucial for text-based applications.

3

F lexibility

C provides a rich set of functions for manipulating

strings, offering great flexibility.

String Handling Functions

in C

This presentation explores essential string handling functions in C, illustrating

their usage and impact with code examples and visual representations.

Introduction to S tring Handling

In C, strings are treated as arrays of characters, each terminated

with a null character ('\0').

String handling functions simplify manipulation of these arrays,

enabling operations like concatenation, copying, and comparison.

strlen(): Measuring String

Length

Code

#include

#include

int main() {

char str[] = "Hello,

world!";

int len =

strlen(str);

printf("Length of

string: %d\n", len);

return 0;

}

Output

Length of string: 13

s trcat(): Concatenating

S trings

Code

#include

#include

int main() {

char str1[] = "Hello,

";

char str2[] =

"world!";

strcat(str1, str2);

printf("%s\n", str1);

return 0;

}

Output

Hello, world!

strcpy(): Copying Strings

Code

#include

#include

int main() {

char str1[] = "Hello,

world!";

char str2[20];

strcpy(str2, str1);

printf("%s\n", str2);

return 0;

}

Output

Hello, world!

s trcmp(): Comparing S trings

Code

#include

#include

int main() {

char str1[] = "Hello";

char str2[] = "World";

int result = strcmp(str1, str2);

printf("Comparison result: %d\n", result);

return 0;

}

Output

Comparison result: -15

strrev(): Reversing Strings

Code

#include

#include

int main() {

char str[] = "Hello, world!";

strrev(str);

printf("%s\n", str);

return 0;

}

Output

!dlrow ,olleH

s trtok(): Subs tring Extraction
Code

#include

#include

int main() {

char str[] = "Hello,

world!";

char *token =

strtok(str, ", ");

while (token != NULL) {

printf("%s\n", token);

token = strtok(NULL,

", ");

}

return 0;

}

Output

Hello

world!

strupr(): Converting to

Uppercase

Code

#include

#include

int main() {

char str[] = "hello,

world!";

strupr(str);

printf("%s\n", str);

return 0;

}

Output

HELLO, WORLD!

s trlwr(): Converting to

Lowercase

Code

#include

#include

int main() {

char str[] = "HELLO,

WORLD!";

strlwr(str);

printf("%s\n", str);

return 0;

}

Output

hello, world!

Pointers: Basics and

Arithmetic in C

This presentation will explore the fundamental concepts of pointers in C

programming, along with essential arithmetic operations and visual

representations for better understanding.

Understanding Pointers in C

Memory Addresses

Pointers in C store memory addresses, providing a way to directly

access and manipulate data stored in specific memory locations.

Direct Access

Pointers enable efficient data manipulation by offering direct

access to memory, eliminating the need for copying data, and

optimizing memory usage.

Declaring and Initializing

Pointers

1 Declaration

Declare a pointer variable

using the asterisk (*) symbol

before the variable name,

followed by the data type it

points to.

2 Initialization

Initialize a pointer by assigning

it the address of a variable

using the ampersand (&)

operator.

Pointer Arithmetic: Incrementing and Decrementing

Increment

Incrementing a pointer moves it to the next memory location,

typically the s ize of the data type it points to.

int *ptr = #

ptr++; // Moves ptr to the next integer location

Decrement

Decrementing a pointer moves it to the previous memory location,

also based on the data type s ize.

char *chPtr = &letter;

chPtr--; // Moves chPtr to the previous character

location

Pointer Arithmetic: Addition and Subtraction

Addition

Adding an integer value to a pointer moves it forward in memory

by a multiple of the data type s ize.

int *ptr = #

ptr += 2; // Moves ptr two integer locations

ahead

Subtraction

Subtracting an integer value from a pointer moves it backward in

memory by a multiple of the data type s ize.

char *chPtr = &letter;

chPtr -= 3; // Moves chPtr three character

locations back

Graphical Representation of Pointer Arithmetic

Increment

Moving the pointer to the next

address.

Decrement

Moving the pointer to the

previous address.

Addition

Moving the pointer forward by a

specific number of units .

Subtraction

Moving the pointer backward

by a specific number of units .

Pointer Dereferencing and

Accessing Values

Dereferencing

The dereference operator (*)

accesses the value stored at the

memory address pointed to by a

pointer.

Value Retrieval

Dereferencing a pointer allows

you to read and manipulate the

data stored at the memory

location it points to.

Pointer Arithmetic with Arrays

1
Array Access

A pointer to an array represents the starting address of the array.

2

Element Access

Pointer arithmetic is used to access elements of the array by moving the pointer to the

desired element's address.

3

Efficiency

Pointer arithmetic with arrays provides a concise and efficient

way to access and manipulate array elements directly.

Pointers and Dynamic Memory Allocation

1

Dynamic Allocation

Dynamic memory allocation enables you to request memory from the heap during program execution.

2
Heap

The heap is a region of memory where dynamically allocated blocks reside.

3

Pointers

Pointers are used to store the addresses of dynamically allocated memory blocks.

4

Flexibility

Dynamic memory allocation provides flexibility for managing memory

usage based on program requirements.

Practical Applications of Pointers
in C

1
Data S tructures

Pointers are essential for building dynamic

data structures like linked lists, trees, and

graphs.

2
Memory Management

Pointers play a crucial role in managing

memory allocation and deallocation in C

programs.

3
Function Parameters

Pointers can be passed as function

parameters to modify data directly within

the called function.

Dynamic Memory Allocation in

C

Dynamic memory allocation is a powerful technique in C that allows you to

manage memory during runtime, providing flexibility and efficiency for your

programs.

What is Dynamic Memory Allocation?

Static Memory Allocation

Memory is allocated at compile time, and the size of the variable

is fixed. This is suitable for variables whose size is known in

advance, such as arrays or structures.

Dynamic Memory Allocation

Memory is allocated at runtime, allowing you to allocate memory

as needed. This is useful for variables whose size is unknown

beforehand, or whose size changes frequently, like strings or lists.

The malloc() Function

Declaration

void *malloc(size_t size);

Usage

It takes the s ize of memory needed in bytes as an argument. It

returns a pointer to the allocated memory block. If the allocation

fails , it returns NULL.

int *ptr = (int *)malloc(sizeof(int));

The calloc() Function

Declaration

void *calloc(size_t num, size_t size);

Usage

It allocates memory for an array of num elements, each of size

bytes. It initializes the allocated memory to zero. It returns a

pointer to the allocated memory block. If the allocation fails, it

returns NULL.

int *ptr = (int *)calloc(5, sizeof(int));

The realloc() Function

Declaration

void *realloc(void *ptr, size_t new_size);

Usage

It resizes a previously allocated memory block. It takes a pointer

to the existing memory block and the new size as arguments. It

returns a pointer to the resized memory block. If the allocation

fails , it returns NULL. The original memory block may be moved.

int *ptr = (int *)realloc(ptr, 10 * sizeof(int));

The free() Function

Declaration

void free(void *ptr);

Usage

It deallocates a memory block previously allocated with malloc,

calloc, or realloc. It takes a pointer to the memory block as an

argument. It doesn't return anything.

free(ptr);

Example: Dynamically Allocating an Integer Array

Code

#include <stdio.h>

#include <stdlib.h>

int main() {

int n;

printf("Enter the size of the array: ");

scanf("%d", &n);

int *arr = (int *)malloc(n * sizeof(int));

if (arr == NULL) {

printf("Memory allocation failed!\n");

return 1;

}

printf("Enter the elements of the array:\n");

for (int i = 0; i < n; i++) {

scanf("%d", &arr[i]);

}

printf("Elements of the array:\n");

for (int i = 0; i < n; i++) {

printf("%d ", arr[i]);

}

free(arr);

return 0;

}

Output

Enter the size of the array: 5

Enter the elements of the array:

1 2 3 4 5

Elements of the array:

1 2 3 4 5

Example: Dynamically Allocating a 2D Array

Code

#include <stdio.h>

#include <stdlib.h>

int main() {

int rows, cols;

printf("Enter the number of rows: ");

scanf("%d", &rows);

printf("Enter the number of columns: ");

scanf("%d", &cols);

int **arr = (int **)malloc(rows * sizeof(int *));

if (arr == NULL) {

printf("Memory allocation failed!\n");

return 1;

}

for (int i = 0; i < rows; i++) {

arr[i] = (int *)malloc(cols * sizeof(int));

if (arr[i] == NULL) {

printf("Memory allocation failed!\n");

return 1;

}

}

printf("Enter the elements of the 2D array:\n");

for (int i = 0; i < rows; i++) {

for (int j = 0; j < cols; j++) {

scanf("%d", &arr[i][j]);

}

}

printf("Elements of the 2D array:\n");

for (int i = 0; i < rows; i++) {

for (int j = 0; j < cols; j++) {

printf("%d ", arr[i][j]);

}

printf("\n");

}

for (int i = 0; i < rows; i++) {

free(arr[i]);

Output

Enter the number of rows: 2

Enter the number of columns: 3

Enter the elements of the 2D array:

1 2 3

4 5 6

Elements of the 2D array:

1 2 3

4 5 6

Example: Reallocating Dynamic Memory

Code

#include <stdio.h>

#include <stdlib.h>

int main() {

int *ptr = (int *)malloc(5 * sizeof(int));

if (ptr == NULL) {

printf("Memory allocation failed!\n");

return 1;

}

for (int i = 0; i < 5; i++) {

ptr[i] = i + 1;

}

printf("Original array:\n");

for (int i = 0; i < 5; i++) {

printf("%d ", ptr[i]);

}

printf("\n");

ptr = (int *)realloc(ptr, 10 * sizeof(int));

if (ptr == NULL) {

printf("Memory reallocation failed!\n");

return 1;

}

Output

Original array:

1 2 3 4 5

Reallocated array:

1 2 3 4 5 6 7 8 9 10

for (int i = 5; i < 10; i++) {
ptr[i] = i + 1;

}

printf("Reallocated array:\n");
for (int i = 0; i < 10; i++) {
printf("%d ", ptr[i]);

}
printf("\n");

free(ptr);
return 0;

}

Conclusion: Benefits and

Considerations of Dynamic

Memory Allocation

Benefits

F lexibility: Allocate memory only

when needed. Efficiency: Avoid

allocating unnecessary memory.

Adaptability: Easily adjust memory

usage based on program

requirements.

Considerations

Memory leaks: Unreleased

memory can lead to program

instability. Security vulnerabilities:

Incorrect memory management

can create security risks.

Complexity: Requires careful

handling and understanding of

memory management techniques.

Structures, Enumerations,

and Unions in C

This presentation explores the fundamental data structures in C -

structures, enumerations, and unions. We'll delve into their

functionalities, provide illustrative examples, and shed light on their

distinctive features and practical applications.

S tructures in C

What are Structures?

Structures are user-defined data types that allow you to

group variables of different data types under a single

name. Think of them as blueprints for creating custom data

types to represent real-world entities like students,

employees, or products.

E xample

struct Student {

char name[50];

int roll_no;

float marks;

};

Example: A Structure to Represent a Person

Code

#include <stdio.h>

struct Person {

char name[50];

int age;

char address[100];

};

int main() {

struct Person person1;

strcpy(person1.name, "John Doe");

person1.age = 30;

strcpy(person1.address, "123 Main Street");

printf("Name: %s\n", person1.name);

printf("Age: %d\n", person1.age);

printf("Address: %s\n", person1.address);

return 0;

}

Output

Name: John Doe

Age: 30

Address: 123 Main Street

E numerations in C

What are E numerations?

E numerations (enums) are user-defined data types that

consist of a set of named integer constants. They provide a

way to represent a fixed set of values, making your code

more readable and maintainable.

E xample

enum Days {

Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday, Sunday

};

Example: An Enumeration for Days of the Week

Code

#include <stdio.h>

enum Days {

Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday, Sunday

};

int main() {

enum Days today = Wednesday;

printf("Today is %d\n", today);

return 0;

}

Output

Today is 2

Unions in C

What are Unions?

Unions are user-defined data types that allow you to store

different data types in the same memory location. They're

useful when you want to represent different data types

using the same variable, but only one value is needed at a

time.

E xample

union Shape {

int square_side;

float circle_radius;

};

Example: A Union to Represent a Shape

Code

#include <stdio.h>

union Shape {

int square_side;

float circle_radius;

};

int main() {

union Shape shape;

shape.square_side = 5;

printf("Area of square: %d\n", shape.square_side *

shape.square_side);

shape.circle_radius = 2.5;

printf("Area of circle: %f\n", 3.14159 * shape.circle_radius *

shape.circle_radius);

return 0;

}

Output

Area of square: 25

Area of circle: 19.634954

Differences between Structures,

Enumerations, and Unions

Structures

Store multiple members of different

data types. Each member has its

own memory space. Used to

represent complex data structures.

Enumerations

Define a set of named integer

constants. Used to represent a

fixed set of values.

Unions

Store different data types in the same memory location. Only one member

can be active at a time. Used when only one data type is needed at a time.

Graphical Representation of Structures,

Enumerations, and Unions

Structure

Multiple members, each with its own

memory space.

Enumeration

Named integer constants, representing

a fixed set of values.

Union

Different data types share the same

memory space, only one member active

at a time.

Practical Applications of
S tructures, E numerations,

and Unions

1 Structures

Representing employee

records, student data, and

product information.

2 E numerations

Defining days of the week,

months of the year, and

traffic light colors.

3 Unions

Creating a data type that can represent both an integer and a

floating-point number, depending on the context.

File Handling in C: Read,

Write, Append Modes

This presentation provides a comprehensive overview of file handling in

C, covering the fundamental concepts, functions, and best practices.

We will explore the various file opening modes, including read, write,

and append, and demonstrate their applications through practical

examples. Get ready to unlock the power of file manipulation in C!

Introduction to F ile Handling in C

File Handling in C

File handling in C allows programs to interact with external

data stored in files. This enables us to read data from files,

write new data to files, and modify existing files.

Why File Handling is Important

File handling is essential for creating programs that can

store data persistently, share data with other programs, and

manage data in various formats.

The fopen() Function: Opening a File

Syntax

FILE *fp = fopen("filename", "mode");

Explanation

The fopen() function opens a file and returns a file pointer

(FILE *) to access the file. The filename argument specifies

the path to the file, and the mode argument indicates the

purpose of opening the file.

F ile Opening Modes: Read, Write, Append

1 Read Mode ("r")

Opens an existing file for

reading. If the file doesn't exist,

the function fails.

2 Write Mode ("w")

Creates a new file for writing. If

the file exists, it's overwritten.

3 Append Mode ("a")

Opens an existing file for

appending data. If the file

doesn't exist, it's created.

Reading from a File: The fread() Function

Syntax

size_t fread(void *ptr, size_t size, size_t

nmemb, FILE *fp);

Explanation

The fread() function reads data from a file into a memory

buffer. It takes the following arguments: - ptr: Pointer to the

memory buffer to store the data - size: Size of each data

element - nmemb: Number of data elements to read - fp:

File pointer to the opened file

Writing to a F ile: The fwrite() Function

Syntax

size_t fwrite(const void *ptr, size_t size,

size_t nmemb, FILE *fp);

E xplanation

The fwrite() function writes data from a memory buffer to a

file. It takes the following arguments: - ptr: Pointer to the

memory buffer containing the data - size: Size of each data

element - nmemb: Number of data elements to write - fp:

File pointer to the opened file

Appending to a File: The fprintf() Function

Syntax

int fprintf(FILE *fp, const char *format, ...);

Explanation

The fprintf() function writes formatted data to a file. It takes

the following arguments: - fp: File pointer to the opened file

- format: Format string specifying how the data should be

formatted - ...: Additional arguments containing the data to

be written

Handling F ile E rrors and E xceptions

E rror Handling

It's crucial to check for file errors after opening, reading,

writing, or closing a file. The ferror() function can be used

to determine if an error has occurred.

E xception Handling

Use the perror() function to display a user-friendly error

message based on the error code returned by the system.

Example: Reading from a File

Code

#include <stdio.h>

int main() {

FILE *fp;

char buffer[100];

fp = fopen("data.txt", "r");

if (fp == NULL) {

perror("Error opening file");

return 1;

}

fgets(buffer, 100, fp);

printf("Content: %s", buffer);

fclose(fp);

return 0;

}

Output

Content: This is the content of the file.

Example: Writing to a File

Code

#include <stdio.h>

int main() {

FILE *fp;

char data[] = "This is the data

to write to the file.";

fp = fopen("output.txt", "w");

if (fp == NULL) {

perror("Error opening file");

return 1;

}

fprintf(fp, "%s\n", data);

fclose(fp);

return 0;

}

Output

(The file output.txt now contains the following text):

This is the data to write to the file.

Debugging and Error

Handling in C

This presentation will explore the essential concepts of debugging and error

handling in the C programming language. We'll delve into different types of

errors, debugging techniques, and best practices to enhance your code's

reliability and maintainability.

Importance of Debugging and Error Handling

Program Stability

Debugging ensures your program runs

smoothly and predictably, preventing

unexpected crashes and malfunctions.

Error Prevention

Error handling mechanisms catch

potential issues during runtime, mitigating

problems before they affect users.

User Experience

Effective error handling provides clear

and informative messages to users,

enhancing their overall experience.

Common Types of Errors in C

Syntax Errors

Violations of the C language

grammar, such as missing

semicolons or incorrect keywords.

Runtime Errors

Issues that arise during program

execution, like memory access

violations or division by zero.

Logical Errors

Incorrect program logic that leads to

unexpected or unintended behavior,

even though the code is syntactically

correct.

Syntax E rrors: E xample and

Output

int main() {

printf("Hello, world!\n

}

Output: error: expected ';' before '}' token

Runtime Errors: Example and

Output

#include <stdio.h>

int main() {

int x = 10;

int y = 0;

int z = x / y;

printf("Result: %d\n", z);

return 0;

}

Output: Floating point exception (core dumped)

Logical E rrors: E xample and

Output

#include <stdio.h>

int main() {

int num1 = 5;

int num2 = 10;

int sum = num1 - num2; // Should be addition

printf("Sum: %d\n", sum);

return 0;

}

Output: Sum: -5 (Expected: 15)

The `printf()` Debugging

Technique

#include <stdio.h>

int main() {

int num1 = 5;

int num2 = 10;

printf("num1: %d\n", num1);

printf("num2: %d\n", num2);

int sum = num1 + num2;

printf("Sum: %d\n", sum);

return 0;

}

Output: num1: 5 num2: 10 Sum: 15

Using `gdb` for Debugging: E xample and Output

int main() {

int x = 10;

int y = 0;

int z = x / y; // Potential error

printf("Result: %d\n", z);

return 0;

}

Output: (gdb) run S tarting program: ./program Program received signal S IGFPE , F loating point exception. [... stack trace ...] (gdb) print x $1 = 10 (gdb) print y

$2 = 0 (gdb) print z $3 = 0 (gdb)

Handling Errors with `errno`

and `perror()`

#include <stdio.h>

#include <errno.h>

int main() {

FILE *fp = fopen("myfile.txt", "r");

if (fp == NULL) {

perror("Error opening file");

return 1;

}

// ... file operations ...

fclose(fp);

return 0;

}

Output: Error opening file: No such file or directory

Best Practices for E ffective

Debugging and Error Handling

Test Thoroughly

Run your code with various inputs to identify

potential issues in different scenarios.

Document Code

Add comments to explain the logic and

purpose of your code, making it easier to

understand and debug.

Use Assertions

Assert conditions that should always be true

during runtime to catch logical errors early

on.

Handle E rrors Gracefully

Provide informative error messages to

users, and attempt to recover from errors

gracefully.

Advanced Functions and

Macros in C

This presentation will explore the powerful features of advanced functions and

macros in C, delving into their definitions, usage, and best practices. We'll

examine how functions enhance code organization and reusability, while

macros offer flexible code manipulation.

What are Functions?

Functions are self-contained blocks of code designed to perform

specific tasks. They encapsulate logic, making code more

modular and easier to manage.

Functions improve code readability and maintainability by

breaking down complex tasks into smaller, reusable units. They

promote code reuse, reducing redundancy and enhancing

efficiency.

Defining and Calling Functions

Defining a Function

int add(int a, int b) {

return a + b;

}

Calling a Function

int main() {

int result = add(5, 3);

printf("Result: %d\n", result);

return 0;

}

Output: Result: 8

Functions with Parameters

Function Definition

int multiply(int x, int y) {

return x * y;

}

Function Call

int main() {

int product = multiply(4, 7);

printf("Product: %d\n", product);

return 0;

}

Output: Product: 28

Return Values from Functions

Function Definition

float calculateAverage(float num1, float num2) {

return (num1 + num2) / 2;

}

Function Call

int main() {

float average = calculateAverage(10.5, 15.2);

printf("Average: %.2f\n", average);

return 0;

}

Output: Average: 12.85

Recursion

Function Definition

int factorial(int n) {

if (n == 0) {

return 1;

} else {

return n * factorial(n - 1);

}

}

Function Call

int main() {

int result = factorial(5);

printf("Factorial of 5: %d\n", result);

return 0;

}

Output: Factorial of 5: 120

Preprocessor Directives and

Macros

1 Preprocessor Directives

Instructions processed before

compilation, influencing how

the source code is treated.

2 Macros

Code snippets replaced with

equivalent text during

compilation, providing flexibility

and optimization.

Macro Substitution

Macro Definition

#define PI 3.14159

Macro Usage

int main() {

float circumference = 2 * PI * 5;

printf("Circumference: %.2f\n", circumference);

return 0;

}

Output: Circumference: 31.42

Macros with Arguments

Macro Definition

#define SQUARE(x) (x * x)

Macro Usage

int main() {

int number = 7;

int squared = SQUARE(number);

printf("Squared value: %d\n", squared);

return 0;

}

Output: Squared value: 49

Pitfalls of Macros

1 Side E ffects

Macros can lead to unexpected

results when applied to expressions

with side effects (e.g., function calls),

potentially causing unexpected

behavior.

2 Type Safety

Macros lack type checking, making

them prone to errors when used with

different data types.

3 Debugging Challenges

Macros are expanded during pre-

processing, making it challenging to

debug issues directly in the source

code.

Advanced Pointer Techniques

in C

This presentation will explore some advanced techniques for using pointers in C

programming, including pointers to pointers , pointers to arrays, dynamic

memory allocation, pointers and structures, and pointers as function arguments.

Pointers to Pointers

Concept

A pointer to a pointer is a variable that stores the memory address

of another pointer. It's like having a pointer that points to a pointer,

allowing you to indirectly access the data pointed to by the

original pointer.

E xample

int x = 10;

int *ptr1 = &x;

int **ptr2 = &ptr1;

printf("%d\n", **ptr2); // Output: 10

Example: Swapping two integers using pointers to

pointers

Code

void swap(int **ptr1, int **ptr2) {

int *temp = *ptr1;

*ptr1 = *ptr2;

*ptr2 = temp;

}

int main() {

int a = 10, b = 20;

int *ptr1 = &a, *ptr2 = &b;

swap(&ptr1, &ptr2);

printf("a = %d, b = %d\n", a, b); // Output: a = 20,

b = 10

return 0;

}

Explanation

The ̀ swap` function takes two pointers to pointers as arguments. By

dereferencing these pointers, it swaps the values pointed to by the

original pointers.

Pointers to Arrays

Concept

A pointer to an array is a variable that stores the memory address

of the first element of the array. It allows you to access and

manipulate array elements directly using pointer arithmetic.

E xample

int arr[] = {1, 2, 3, 4, 5};

int *ptr = arr;

printf("%d\n", *ptr); // Output: 1

printf("%d\n", *(ptr + 1)); // Output: 2

Example: Accessing array elements using pointers

to arrays

Code

int main() {

int arr[] = {10, 20, 30, 40, 50};

int *ptr = arr;

for (int i = 0; i < 5; i++) {

printf("%d ", *(ptr + i)); // Output: 10 20

30 40 50

}

return 0;

}

Explanation

The code iterates through the array using a `for` loop and

accesses each element using the pointer `ptr`. The pointer

arithmetic ̀ *(ptr + i)` accesses the element at the `ì -th index.

Dynamic Memory Allocation

Concept

Dynamic memory allocation allows you to allocate memory during

program execution, unlike statically allocated memory, which is

fixed at compile time. Functions like `malloc()`, ̀ calloc()`, and

`realloc()` provide this capability.

E xample

int *ptr = (int *) malloc(sizeof(int));

if (ptr == NULL) {

// Handle memory allocation failure

}

*ptr = 10;

printf("%d\n", *ptr); // Output: 10

free(ptr); // Release the allocated memory

Example: Dynamically allocating and initializing an array

Code

int main() {

int n;

printf("Enter the size of the array: ");

scanf("%d", &n);

int *arr = (int *) malloc(n * sizeof(int));

if (arr == NULL) {

// Handle memory allocation failure

}

for (int i = 0; i < n; i++) {

arr[i] = i + 1; // Initialize the array elements

}

for (int i = 0; i < n; i++) {

printf("%d ", arr[i]);

}

free(arr); // Release the allocated memory

return 0;

}

Explanation

The code first prompts the user for the array size, dynamically allocates memory using `malloc`,

and then initializes the elements of the allocated array.

Pointers and Structures

Concept

You can use pointers to access and manipulate the members of a

structure. This allows for efficient data manipulation and passing

structures as arguments to functions.

E xample

struct Student {

char name[50];

int rollno;

};

int main() {

struct Student s1 = {"John Doe", 101};

struct Student *ptr = &s1;

printf("%s %d\n", ptr->name, ptr->rollno); //

Output: John Doe 101

return 0;

}

Example: Accessing structure members using pointers

Code

struct Book {

char title[100];

char author[50];

int pages;

};

void printBook(struct Book *book) {

printf("Title: %s\n", book->title);

printf("Author: %s\n", book->author);

printf("Pages: %d\n", book->pages);

}

int main() {

struct Book b1 = {"The Hitchhiker's Guide to the Galaxy",

"Douglas Adams", 42};

printBook(&b1);

return 0;

}

Explanation

The `printBook` function takes a pointer to a `Book` structure. It accesses the members of

the structure using the arrow operator (`->̀) to display the book details.

Pointers and Function Arguments

Concept

Passing pointers as arguments to functions allows you to modify

the original data directly within the function. This is more efficient

than passing copies of large data structures.

E xample

void increment(int *num) {

*num = *num + 1;

}

int main() {

int num = 10;

increment(&num);

printf("%d\n", num); // Output: 11

return 0;

}

Week 16

Chapter 16

Project Integration and Review

Beginner Projects
1.Basic Calculator

1. Features: Perform basic arithmetic operations (+, -, *, /).

2. Skills: Input handling, control structures, and functions.

2.Unit Conversion Tool

1. Features: Convert between units (e.g., length, weight,

temperature).

2. Skills: Switch-case, modular programming.

3.Student Record System

1. Features: Add, view, and delete student records.

2. Skills: Arrays, file handling, basic menu systems.

4.Number Guessing Game

1. Features: The program generates a random number, and the

user guesses it with hints provided.

2. Skills: Loops, random number generation, conditional

statements.

5.Simple Tic-Tac-Toe Game

1. Features: Two players can play a classic game of tic-tac-toe

on a 3x3 grid.

2. Skills: 2D arrays, nested loops, and conditional logic.

1. Library Management System
Features:

•Add, delete, and search for books.

•Issue and return books to/from students.

•View issued books and calculate late return fines.

•Skills Used:

•File handling (to store book and student data).

•Structures (to manage records).

2. Hospital Management System
Features:

•Add, search, and delete patient records.

•Manage doctor schedules and appointments.

•Generate bills for services provided.

• Skills Used:

•File handling (to save patient and doctor data).

•Structures and dynamic memory allocation.

•Input validation.

3. Inventory Management System
Features:

•Add, update, and remove products.

•Track inventory levels and notify when

stock is low.

•Generate purchase and sales reports.

• Skills Used:

•Arrays or linked lists for inventory storage.

•File handling for saving and retrieving

data.

•Functions for modularity.

4. Employee Management System
Features:

•Add, update, and delete employee

details (e.g., name, position, salary).

•Calculate salary, including bonuses and

deductions.

•Search for employees by name or ID.

Skills Used:

•Structures for employee records.

•File handling for persistence.

•Sorting algorithms for employee lists.

